Adult ASTHMA PROVIDER MANUAL revised 2008
Table of Contents

Asthma
- Description 4
- Causes of Asthma 4
- Utah Prevalence 5

Diagnosis of Asthma
9

Education for Partnership in Care
- Key Educational Messages 11
- Self-management 12

Environmental Factors
13

Co-morbid Conditions
14

Managing Asthma
- Medications 17
- Stepwise Approach 18

Special Situations
- Exercised-induced Bronchospasm 22
- Pregnancy 22
- Disparities 22
- Work-related Asthma 23
- Seniors and Asthma 24

Additional Resources
27
Asthma--Description

Asthma is a complex disorder characterized by:
- Variable and recurring symptoms
- Airflow obstruction
- Bronchial hyperresponsiveness
- Underlying inflammation

Working definition of asthma is as follows:
Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role: in particular mast cells, eosinophils, neutrophils (especially in sudden onset, fatal exacerbations, occupational asthma, and patients who smoke), T-lymphocytes, macrophages, and epithelial cells. In susceptible individuals, this inflammation causes recurrent episodes of coughing (particularly at night or early in the morning), wheezing, breathlessness, and chest tightness. These episodes are usually associated with widespread but variable airflow obstruction that is often reversible either spontaneously or with treatment.

Airflow limitation is caused by a variety of changes in the airway, all influenced by airway inflammation:
- Bronchoconstriction—bronchial smooth muscle contraction that quickly narrows the airways in response to exposure to a variety of stimuli, including allergens or irritants.
- Airway hyperresponsiveness—an exaggerated bronchoconstrictor response to stimuli.
- Airway edema—as the disease becomes more persistent and inflammation becomes more progressive, edema, mucus hypersecretion, and formation of inspissated mucus plugs further limit airflow.

Remodeling of airways may occur. Reversibility of airflow limitation may be incomplete in some patients. Persistent changes in airway structure occur, including sub-basement fibrosis, mucus hypersecretion, injury to epithelial cells, smooth muscle hypertrophy, and angiogenesis.

Causes of Asthma

The development of asthma appears to involve the interplay between host factors (particularly genetics) and environmental exposures that occur at a crucial time in the development of the immune system. A definitive cause of the inflammatory process leading to asthma has not yet been established. The following are causes of asthma at different levels:
- Innate immunity
- Genetics
- Environmental factors
 - Airborne allergens
 - Viral respiratory infections
 - Tobacco smoke
 - Air pollution
 - Diet
Knowledge of the importance of inflammation to the central features of asthma continues to expand and underscores inflammation as a primary target of treatment. Studies indicate that current therapeutic approaches are effective in controlling symptoms, reducing airflow limitation, and preventing exacerbations, but currently available treatments do not appear to prevent the progression of asthma in children. As various phenotypes of asthma are identified and inflammatory and genetic factors become more apparent, new therapeutic approaches may be developed that will allow even greater specificity to tailor treatment to the individual patient’s needs and circumstances.

Normal Bronchiole
Asthmatic Bronchiole

Prevalence of Current Asthma by Age and Sex, Utah, 2007

![Graph showing prevalence of current asthma by age and sex in Utah, 2007](image)

Current asthma is defined as those who have ever been diagnosed with asthma by a doctor or other health professional and who report that they still have asthma. Overall, 8.0% of Utahns reported having current asthma in 2007. Males ages 0-17 appeared to have a higher prevalence of asthma when compared to females. For adults ages 18 and older, females seemed to have a higher prevalence of asthma for every age group. However, the only significant difference in asthma prevalence between males and females was found among adults ages 35-49.
Prevalence of Current Asthma by Level of Income, Utah Adults 18 and Over, 2007

Most Recent Asthma Symptoms, Adults and Children with Current Asthma, Utah, 2007

Adults reporting a household income of less than $20,000 a year had a higher prevalence of current asthma (12.1%) when compared to the general Utah adult population (8.2%). Asthma prevalence appeared to decrease with increasing income levels, although differences between income levels were not statistically significant. However the data suggests that low income may be a contributing factor in the development or continuance of asthma.

Over half (52.3%) of adults experienced their most recent asthma symptom less than one week ago, compared to only 19.7% of children with symptoms within the past week. Nearly one in 10 adults (8.2%) and 14.5% of children with current asthma reported remaining symptom-free during the past year.

Some of the differences in symptoms experienced by children versus adults may be due to a difference in reporting methods for the two age groups. Asthma symptoms for children were reported by a parent or guardian, while adult symptoms were self-reported.
Asthma self-management education is an integral part of effective asthma care and improves patient outcomes by reducing limitations on activities and improving quality of life for those with asthma. It is recommended that health care providers teach self-management skills by providing every asthma patient with a written asthma action plan and encouraging self-monitoring and self-management of asthma symptoms.

In 2007, 79.2% of parents of children with lifetime asthma reported that either they or their children were taught by a health professional to recognize early signs or symptoms of an asthma episode and 80.2% reported being taught what to do during an asthma attack. This is significantly higher than the percent of adults with lifetime asthma who reported being taught to recognize signs or symptoms of an asthma episode (56.1%) or what to do during an asthma attack (62.9%).

Asthma Hospitalization by Age and Sex, Utah Adults Ages 18 and Over, 2007

Female adults had a higher rate of hospitalization due to asthma compared to adult males in every age group. The highest rates of hospitalization for both male and female adults were among those ages 65 years and older (5.4 and 10.6 per 10,000 residents).
Among adults ages 18 and older, females experienced a higher rate of emergency department encounters for asthma when compared to males in every age group. The rate of emergency department encounters was the lowest among adults ages 55-64 for both males (8.9 encounters per 10,000 residents) and females (14.1 encounters per 10,000 residents).

Source: Utah Emergency Department Encounter Database, 2006. Crude rates. Note: The primary diagnosis code ICD 493 was used to identify emergency department visits due to asthma. Data include only those who were treated and released but not admitted as inpatients.
Diagnosis

To establish a diagnosis of asthma, the clinician should determine that symptoms of recurrent episodes of air flow obstruction or airway hyperresponsiveness are present; airflow obstruction is at least partially reversible; and alternative diagnoses are excluded.

Key symptom indicator of considering a diagnosis of asthma:

*The presence of multiple key indicators increases the probability of asthma, but spirometry is needed to establish a diagnosis.

- Wheezing—A lack of wheezing and a normal chest examination do not exclude asthma
- History of any of the following:
 - Cough
 - Recurrent wheeze
 - Recurrent difficulty in breathing
 - Recurrent chest tightness
- Symptoms occur or worsen in the presence of:
 - Exercise
 - Viral infection
 - Inhalant allergens (animals, dust mites, mold, pollen)
 - Irritants (tobacco, wood smoke, airborne chemicals)
 - Changes in weather
 - Strong emotional expression (laughing or crying hard)
 - Stress
 - Menstrual cycles
- Symptoms occur or worsen at night, awakening the patient

Recommended methods to establish the diagnosis are:

- Detailed medical history
 - Symptoms
 - Pattern of symptoms
 - Precipitating and/or aggravating factors
 - Development of disease and treatment
 - Family history
 - Social history
 - History of exacerbations
 - Impact of asthma on patient and family
 - Assessment of patient's and family's perceptions of disease
- Physical examination
 - Upper respiratory tract
 - Increased nasal secretion
 - Mucosal swelling
 - Nasal polyp
 - Chest
 - Sounds of wheezing during normal breathing
 - Prolonged phase of forced exhalation
Recurrent episodes of cough and wheezing are most often due to asthma in both children and adults;

- Hyperexpansion of the thorax
- Use of accessory muscles
- Appearance of hunched shoulders
- Chest deformity
 - Skin
 - Atopic dermatitis
 - Eczema
- Spirometry
 - Demonstrates obstruction and assesses reversibility in patient ≥5 years of age.
 - Patients' perceptions of airflow obstruction are highly variable.

Spirometry is an essential objective measure to establish the diagnosis of asthma because the medical history and physical examination are not reliable means of excluding other diagnoses or of assessing lung status.

Differential Diagnosis—Adults:

- Chronic obstructive pulmonary disease (COPD)
- Congestive heart failure (CHF)
- Pulmonary embolism
- Mechanical obstruction (tumors)
- Pulmonary infiltration/eosinophilia
- Cough secondary to drugs (ACE inhibitors)
- Laryngeal dysfunction

Recurrent episodes of cough and wheezing are most often due to asthma in both children and adults; however, other significant causes of airway obstruction leading to wheeze must be considered both in the initial diagnosis and if there is not clear response to initial therapy.

Common diagnostic challenges include:

- Cough variant asthma—cough can be the principal, or only, manifestation of asthma, especially in young children.
- Vocal cord dysfunction (VCD)—can mimic asthma, but it is a distinct disorder. VCD may coexist with asthma, but asthma medications typically do little if anything to relieve VCD symptoms.
- Gastroesophageal reflux disease (GERD), obstructive sleep apnea (OSA), and allergic bronchopulmonary aspergillosis (ABPA)

Consider referral to an asthma specialist if signs and symptoms are atypical, if there are problems with a differential diagnosis, or if additional testing is indicated.
Education for a Partnership in Care

A partnership between the clinician, the person who has asthma, and the caregiver is required for effective asthma management. By working together, an appropriate treatment can be selected and the patient can learn self-management skills necessary to control asthma. Self-management education improves patient outcomes and can be cost-effective. Self-management education is an integral component of effective asthma care and should be treated as such by health care providers as well as by health care policies and reimbursements.

Key educational messages: Teach and reinforce at every opportunity

Basic Facts about Asthma

- The contrast between airways of a person who has and a person who does not have asthma; the role of inflammation.
- What happens to the airways during an asthma attack.

Role of Medications: Understanding the Difference Between:

- Long-term control medications: prevent symptoms, often by reducing inflammation. Must be taken daily. Do not expect them to give quick relief.
- Quick-relief medications: SABAs relax airway muscles to provide prompt relief of symptoms. Do not expect them to provide long-term asthma control. Using SABA > 2 days a week indicates the need for starting or increasing long-term control medications.

Patient Skills

- Taking medications correctly
 - Inhaler technique (demonstrate to the patient and have the patient return the demonstration).
 - Use of devices as prescribed (e.g., valved holding chamber (VHC) or spacer, nebulizer).
 - Identifying and avoiding environmental exposures that worsen the patient’s asthma; e.g., allergens, irritants, tobacco smoke.
- Self-monitoring
 - Assess level of asthma control
 - Monitor symptoms and, if prescribed, peak flow measures.
 - Recognize early signs and symptoms of worsening asthma.
- Using a written asthma action plan to know when and how to:
 - Take daily actions to control asthma
 - Adjust medication in response to signs of worsening asthma
- Seeking medical care as appropriate.
Adults—Teach Asthma Self-management Skills to Promote Asthma Control

- Provide patients asthma self-management education that includes the following essential items: asthma information and training in:
 - Asthma management skills
 - Self-monitoring (either symptom or peak flow based)
 - Written asthma action plan
 - Regular assessment by a consistent clinician

- Involve patients in decisions about the type of self-monitoring of asthma control that they will do.

- Provide all patients with a written asthma action plan that includes instructions for:
 - Daily management
 - Recognizing and handling worsening asthma (including self-adjustment of medications in response to acute symptoms or changes in PEF measures).

- Written asthma action plans are particularly recommended for patients who have:
 - Moderate or severe persistent asthma
 - A history of severe exacerbations
 - Poorly controlled asthma

- Involve adult patients in treatment decision-making within the context of a therapeutic partnership.

- Health professionals and others trained in asthma self-management education should be used to implement and teach asthma self-management programs.

Develop an active partnership with the patient and family by:

- Establishing open communication that considers cultural and ethnic factors, as well as language and health care literacy needs, of each patient and family.
- Identifying and addressing patient and family concerns about asthma and asthma treatment.
- Developing treatment goals and selecting medications together with the patient and family, allowing full participation in treatment decision-making.
- Encouraging self-monitoring and self-management by reviewing at each opportunity the patient’s reports of asthma symptoms and response to treatment.
Provide to all patients a written asthma action plan that includes instruction for daily management, including:

- Long-term control medication (if appropriate)
- Environmental control measures
- Actions to manage worsening asthma (signs/symptoms, PEF measurements [if used], that indicate worsening asthma; medications to take in response; signs/symptoms that indicate immediate medical care is needed)
- Written asthma action plan (particularly for those with moderate or severe persistent asthma)

Integrate asthma self-management education into all aspects of asthma care. Asthma self-management requires repetition and reinforcement.

- Begin at the time of diagnosis and continue through follow-up care.
- Involve all members of the health care team, including physicians, nurses, pharmacists, respiratory therapists, and asthma educators.
- Reinforce at all points of care where health care professionals interact with patients who have asthma.
- Incorporate individualized case/care management by trained health care professionals for patients who have poorly controlled asthma.
- Use a variety of educational strategies.

Encourage patient’s adherence to the written asthma action plan by:

- Choosing treatment that achieves outcomes and addresses preferences that are important to patient.
- Reviewing with patient at each visit the success of the treatment plan.
- Reviewing patient’s concerns
- Assessing patient’s and family’s level of social support.
- Tailoring the self-management approach to the needs and literacy level of the patient.

Control of Environmental Factors and Co-morbid Conditions

If patients who have asthma are exposed to irritants or inhalant allergens to which they are sensitive, their asthma symptoms may increase and precipitate an asthma exacerbation. Substantially reducing exposure to these factors may reduce inflammation, symptoms, and need for medication. Several co-morbid conditions can impede asthma management.
Evaluate the potential role of allergens (particularly inhalant allergens) and irritants.

- Identify allergens and pollutants or irritant exposures. The most important allergens for both children and adults appear to be those that are inhaled.
- For patients who have persistent asthma, use skin testing or in vitro testing to assess sensitivity to perennial indoor allergens.

Advise patients who have asthma to reduce exposures to allergens and pollutants or irritants to which they are sensitive.

- Effective allergen avoidance requires a multifaceted, comprehensive approach; single steps alone are generally ineffective.
- Advise patients who have severe, persistent asthma, nasal polyps, or a history of sensitivity to aspirin or non steroidal anti-inflammatory drugs (NSAIDS) about their risk of severe and even fatal exacerbations from using these drugs.
- Indoor air-cleaning devices cannot substitute for more effective dust-mite and cockroach control measures because these particles do not remain airborne. These devices can reduce airborne dog and cat allergens, mold spores, and tobacco smoke. However, most studies do not show an effect on symptoms or lung function.
- Humidifiers or evaporative (swamp) coolers are generally not recommended in homes of patients who are sensitive to dust mites or mold.

Co-morbid Conditions

Identify and treat co-morbid conditions that may impede asthma management. If these conditions are treated appropriately, asthma control may improve.

- Rhinitis or sinusitis
- Gastroesophageal Reflux (GERD)
- Obese or overweight patients
- Obstructive Sleep Apnea
- Allergic Bronchopulmonary Aspergillosis
- Stress and depression
Managing Asthma Long-Term

Assessing and monitoring asthma severity and asthma control.

The functions of assessment and monitoring are closely linked to the concepts of severity, control and responsiveness to treatment:

- **Severity**: the intrinsic intensity of the disease process. Severity is most easily and directly measured in a patient who is not receiving long-term control therapy. Severity can also be measured once asthma control is achieved by the step of care required to maintain control.
- **Control**: the degree to which the manifestations of asthma are minimized by therapeutic intervention and the goals of therapy are met.
- **Responsiveness**: the ease with which asthma control is achieved by therapy.

Asthma severity and asthma control include the domains of current impairment and future risk.

- **Impairment**: frequency and intensity of symptoms and functional limitations the patient is currently experiencing or has recently experienced.
- **Risk**: the likelihood of asthma exacerbations, progressive decline in lung function (or, for children, reduced lung growth), or risk of adverse effects from medication.

This distinction emphasizes the multifaceted nature of asthma and the need to consider separately asthma's current, ongoing effects on the present quality of life and functional capacity and the future risk of adverse events. The two domains may respond differentially to treatment. For example, evidence demonstrates that some patients can have adequate control of symptoms and minimal day-to-day impairment, but still be at significant risk of exacerbations. These patients should be treated accordingly.

The concepts of severity and control are used as follows for managing asthma:

- **Assess severity to initiate therapy**: at patient’s initial presentation. If the patient is not currently taking long-term control medications, asthma severity is assessed to guide clinical decisions for initiating the appropriate medication and other therapeutic interventions.
- **Assess control to adjust therapy**: once therapy is initiated, the emphasis for clinical management thereafter is changed to the assessment of asthma control. The level of asthma control will guide decisions either to maintain or to adjust therapy.
• **For assessing a patient’s overall asthma severity once the most optimal asthma control is achieved and maintained**: asthma severity can be inferred by correlating the level of severity with the lowest level of treatment required to maintain control.

For the initial assessment to characterize the patient’s asthma and guide decisions for initiating therapy, use information from the diagnostic evaluation to:

- Classify asthma severity
- Identify precipitating factors for episodic symptoms
- Identify co-morbid conditions
- Assess the patient’s knowledge and skills for self-management.

All patients should be taught how to recognize inadequate asthma control.

For periodic monitoring of asthma control to guide decisions for maintaining or adjusting therapy:

- Instruct patients to monitor their asthma control in an ongoing manner. **All patients should be taught how to recognize inadequate asthma control.**
 - Either symptom or peak flow monitoring is appropriate for most patients; evidence suggests the benefits are similar.
 - Consider daily peak-flow monitoring for patients who have moderate or severe persistent asthma, patients who have a history of severe exacerbations, and patients who poorly perceive airway obstruction or worsening asthma.

- Monitor asthma control periodically in clinical visits. The frequency of monitoring is a matter of clinical judgment. In general:
 - **Schedule visits at 2- to 6-week intervals** for patients who are just starting therapy or who require a step up in therapy to achieve or regain asthma control.
 - **Schedule visits at 1- to 6-month intervals** after asthma control is achieved to monitor whether asthma control is maintained. The interval will depend on factors like the duration of asthma control or the level of treatment required.
 - **Consider scheduling visits at 3-month intervals** if a step down in therapy is anticipated.

Assess asthma control, medication technique, the written asthma action plan, adherence, and patient concerns at every patient visit.
Medications

Medications for asthma are categorized into two general classes: long-term control medication and quick-relief medication. Selection of medication includes consideration of the general mechanisms and role of the medication in therapy, delivery devices, and safety.

General Mechanisms and Role in Therapy

Long-term control medications are used daily to achieve and maintain control of persistent asthma. The most effective are those that attenuate the underlying inflammation characteristic of asthma. Long-term control medications include the following (listed in alphabetical order):

- Corticosteroids
- Cromolyn sodium and medocromil
- Immunomodulators
- Leukotriene modifiers
- LABAs (salmeterol and formoterol)
- Methylxanthines

Quick-relief medications are used to treat acute symptoms and exacerbations. They include the following (listed in alphabetical order):

- Anticholinergics
- SABAs (albuterol, levalbuterol, and pirbuterol)
- Systemic corticosteroids

Delivery Devices for Inhaled Medications

Patients should be instructed in the use of inhaled medications and patient’s technique should be reviewed at every patient visit.

The major advantages of delivering drugs directly into the lungs via inhalation are that higher concentrations can be delivered more effectively to the airways and that systemic side effects are lessened. Inhaled medications or aerosols, are available in a variety of devices that differ in the technique required. To reduce the potential for adverse effects, the following measures are recommended:

- Advise patients to use spacers or VHCs with nonbreath-activated metered-dose inhalers (MDIs) to reduce local side effects. There are no clinical data on use of spacers with ultrafine particle hydrofluoroalkane (HFA) MDIs.
- Advise patient to rinse the mouth (rinse and spit) after inhalation.
- Use the lowest dose of ICS that maintains asthma control.
- Consider adding a LABA, or alternative adjunctive therapy, to a low or medium dose of ICS, rather than using a higher dose of ICS to maintain asthma control.
Stepwise Approach for Managing Asthma

A stepwise approach to managing asthma is recommended to gain and maintain control of asthma in both the impairment and risk domains. These domains may respond differentially to treatment. The type, amount, and scheduling of medication is determined by the level of asthma severity or asthma control.

Recommendations for treatment in the different steps are presented in three different age groups (0-4, 5-11, and 12 years and older) because the course of the disease may change over time, the relevance of measures of impairment or risk and the potential short-and long-term impact of medication may be age related, and varied levels of scientific evidence are available for the different ages.

<table>
<thead>
<tr>
<th>Components of Severity</th>
<th>Classification of Asthma Severity</th>
<th>≥12 years of age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermittent</td>
<td>Persistent</td>
</tr>
<tr>
<td></td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td></td>
</tr>
<tr>
<td>Impairment</td>
<td><2 days/week but not daily</td>
<td>Daily</td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td>3-4x/month</td>
<td>>1x/week but not nightly</td>
</tr>
<tr>
<td>Short-acting beta-agonist use for symptom control (not prevention of EIB)</td>
<td>>2 days/week but not daily and not more than 1x on any day</td>
<td>Daily</td>
</tr>
<tr>
<td>Interference with normal activity</td>
<td>None</td>
<td>Minor limitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Some limitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extremely limited</td>
</tr>
<tr>
<td>Lung function</td>
<td>Normal FEV<sub>1</sub> between exacerbations</td>
<td>Normal FEV<sub>1</sub> >80% predicted</td>
</tr>
<tr>
<td></td>
<td>FEV<sub>1</sub> >80% predicted</td>
<td>FEV<sub>1</sub>/FVC normal</td>
</tr>
<tr>
<td></td>
<td>FEV<sub>1</sub>/FVC normal</td>
<td>FEV<sub>1</sub> >60% but <80% predicted</td>
</tr>
<tr>
<td></td>
<td>FEV<sub>1</sub>/FVC reduced 5%</td>
<td>FEV<sub>1</sub>/FVC reduced >5%</td>
</tr>
<tr>
<td>Risk</td>
<td>0-1/year (see note)</td>
<td>≥2/year (see note)</td>
</tr>
</tbody>
</table>

Key: EIB, exercise-induced bronchospasm, FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity; ICU, intensive care unit Notes:
- The stepwise approach is meant to assist, not replace, the clinical decisionmaking required to meet individual patient needs.
- Level of severity is determined by assessment of both impairment and risk. Assess impairment domain by patient’s/caregiver’s recall of previous 2-4 weeks and spirometry. Assign severity to the most severe category in which any feature occurs.
- At present, there are inadequate data to correspond frequencies of exacerbations with different levels of asthma severity. In general, more frequent and intense exacerbations (e.g., requiring urgent, unscheduled care, hospitalization, or ICU admission) indicate greater underlying disease severity. For treatment purposes, patients who had ≥2 exacerbations requiring oral systemic corticosteroids in the past year may be considered the same as patients who have persistent asthma, even in the absence of impairment levels consistent with persistent asthma.
Components of Control

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Classification of Asthma Control (≥12 years of age)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well Controlled</td>
</tr>
<tr>
<td>Symptoms</td>
<td>≥2 days/week</td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td>≥2x/month</td>
</tr>
<tr>
<td>Interference with normal activity</td>
<td>None</td>
</tr>
<tr>
<td>Short-acting β₂-agonist use for symptom control (not prevention of EIB)</td>
<td>≥2 days/week</td>
</tr>
<tr>
<td>FEV₁ or peak flow</td>
<td>>80% predicted/personal best</td>
</tr>
<tr>
<td>Validated questionnaires</td>
<td>ATAAQ 0 ≤0.75* ≤20</td>
</tr>
<tr>
<td></td>
<td>Exacerbations requiring oral systemic corticosteroids</td>
</tr>
<tr>
<td></td>
<td>Progressive loss of lung function</td>
</tr>
<tr>
<td></td>
<td>Treatment-related adverse effects</td>
</tr>
</tbody>
</table>

*ACQ values of 0.76–1.4 are indeterminate regarding well-controlled asthma.

Key: EIB, exercise-induced bronchospasm; ICU, intensive care unit

Notes:
- The stepwise approach is meant to assist, not replace, the clinical decision making required to meet individual patient needs.
- The level of control is based on the most severe impairment or risk category. Assess impairment domain by patient’s recall of previous 2–4 weeks and by spirometry/or peak flow measures. Symptom assessment for longer periods should reflect a global assessment, such as inquiring whether the patient’s asthma is better or worse since the last visit.
- At present, there are inadequate data to correspond frequencies of exacerbations with different levels of asthma control. In general, more frequent and intense exacerbations (e.g., requiring urgent, unscheduled care, hospitalization, or ICU admission) indicate poorer disease control. For treatment purposes, patients who had exacerbations requiring oral systemic corticosteroids in the past year may be considered the same as patients who have not-well-controlled asthma, even in the absence of impairment levels consistent with not-well-controlled asthma.

— Review adherence to medication, inhaler technique, environmental control, and comorbid conditions.
— If an alternative treatment option was used in a step, discontinue and use the preferred treatment for that step.
Step 1, 2, and 3 preferred therapies are based on Evidence A; step 3 alternative therapy is based on Evidence A for LTRA, Evidence B for theophylline, and Evidence D for zileuton. Step 4 preferred therapy is based on Evidence B, and alternative therapy is based on Evidence B for LTRA and theophylline and Evidence D zileuton. Step 5 preferred therapy is based on Evidence B. Step 6 preferred therapy is based on (EPR—2 1997) and Evidence B for omalizumab.

- Immunotherapy for steps 2–4 is based on Evidence B for house-dust mites, animal danders, and pollens; evidence is weak or lacking for molds and cockroaches. Evidence is strongest for immunotherapy with single allergens. The role of allergy in asthma is greater in children than in adults.

- Clinicians who administer immunotherapy or omalizumab should be prepared and equipped to identify and treat anaphylaxis that may occur.

Key: Alphabetical order is used when more than one treatment option is listed within either preferred or alternative therapy. ICS, inhaled corticosteroid; LABA, long-acting inhaled beta2-agonist; LTRA, leukotriene receptor antagonist; SABA, inhaled short-acting beta2-agonist

Notes:
- The stepwise approach is meant to assist, not replace, the clinical decision-making required to meet individual patient needs.
- If alternative treatment is used and response is inadequate, discontinue it and use the preferred treatment before stepping up.
- Zileuton is a less desirable alternative due to limited studies as adjunctive therapy and the need to monitor liver function. Theophylline requires monitoring of serum concentration levels.
- In step 6, before oral corticosteroids are introduced, a trial of high-dose ICS + LABA + either LTRA, theophylline, or zileuton may be considered, although this approach has not been studied in clinical trials.
General principles for all age groups:

- Include medications, patient education, environmental control measures, and management of co-morbidities at each step.
- Monitor asthma control regularly.
- For patients NOT taking long-term control therapy, select treatment based on severity.
- Patients who have persistent asthma require daily long-term control medication.
- Monitor level of asthma control and adjust therapy.
- If possible, identify the minimum amount of medication required to maintain asthma control.

Ages 12 and older

- Involve youths in developing a written asthma action plan
 - Address patient’s concerns, preferences, and school schedule in selecting treatment.
 - Encourage students to take a copy of written action plan to school/after-school activities.
- Promote physical activity
 - Treat exercise-induced bronchospasm (EIB). Step up daily therapy if the child has poor endurance or symptoms during normal daily activities.
- Assess possible benefit of treatment in older patients
 - Establish reversibility with a short course of oral systemic corticosteroids.
- Adjust medications to address coexisting medical conditions common among older patients—consider:
 - Calcium and vitamin D supplements for patients who take ICS and have risk factors for osteoporosis.
 - Increased sensitivity to side effects of bronchodilators with increasing age.
 - Increased drug interactions with theophylline
 - Medications for arthritis (NSAIDS)
 - Hypertension
 - Glaucoma medications (beta blockers) may exacerbate asthma.

Promote active participation in physical activities, exercise, and sports because physical activity is an essential part of a person’s life.

The stepwise approach and recommended treatments are meant to assist, not replace, the clinical decision-making necessary to determine the most appropriate treatment to meet the individual patient’s needs and circumstances.

Once asthma is in control, routine follow-up visits should occur every 6-12 months. If asthma is not in control, the patient should be seen every two weeks until control is achieved.
Consider a referral to an asthma specialist for consultation or co-management if:

- There are difficulties achieving or maintaining control
- The patient requires >2 bursts of oral systemic corticosteroids in 1 year or has an exacerbation requiring hospitalization.
- Step 4 care or higher is required (step 3 or higher for children 0-4).
- Immunotherapy or omalizumab is considered.
- Additional testing is indicated.

Special Situations

Exercised-induced Bronchospasm (EIB)

- Prevent EIB—treatment strategies to prevent EIB include:
 - Long-term control therapy
 - Pretreatment before exercise with SABA, leukotriene receptor antagonists (LTRAs), cromolyn or nedocromil; frequent or chronic use of long acting beta2-agonist (LABA) for pretreatment is discouraged, as it may disguise poorly-controlled persistent asthma.
 - Warm-up period or a mask or scarf over the mouth for cold-induced EIB.

Pregnancy

Maintain asthma control through pregnancy

- Monitor asthma control during all prenatal visits.
- Asthma worsens in one-third of women during pregnancy and improves in one-third—medications should be adjusted accordingly.
- Safer to be treated with asthma medications than to have poorly-controlled asthma.
- Maintaining lung function is important to ensure oxygen supply to fetus.
- Albuterol is the preferred SABA. ICS is the preferred long-term control medication (budesonide is preferred because more data are available on this medication during pregnancy).

Disparities

Multiple factors contribute to the higher rates of poorly controlled asthma and asthma deaths among Blacks and Latinos compared to Whites. These factors include socioeconomic disparities in access to quality medical care, under-prescription and underutilization of long-term control medication, cultural beliefs and practices about asthma management, and perhaps, biological and pathophysiological differences that affect the underlying severity of asthma and response to treatment.
Heightened awareness of disparities and cultural barriers, improving access to quality of care, and improving communication strategies between clinicians and ethnic or racial minority patients regarding use of asthma medications may improve asthma outcomes.

Work-related Asthma

Early recognition and control of exposures is particularly important in occupationally induced asthma, because the likelihood of complete resolution of symptoms decreases with time.

Patterns of symptoms (in relation to work exposures):

- Improvement occurs during vacations or days off (may take a week or more).
- Symptoms may be immediate (<1 hour), delayed (most commonly, 2-8 hours after exposure), or nocturnal.
- Initial symptoms may occur after high-level exposure (e.g., spill).

Potential for workplace-related symptoms:

- Recognized sensitizers (e.g., isocyanates, plant or animal products).
- Irritants or physical stimuli (e.g., cold/heat, dust, humidity)
- Coworkers may have similar symptoms.

Documentation of work-relatedness of airflow limitation:

- Serial charting for 2-3 weeks (2 weeks at work and up to 1 week off work, as needed to identify or exclude work-related changes in PEF):
 - Record when symptoms and exposures occur.
 - Record when a bronchodilator is used.
 - Measure and record peak flow (or FEV1) every 2 hours while awake.
 - Refer to specialist.

Management

Work-aggravated asthma:

- Work with onsite health care providers or managers/supervisors.
- Discuss avoidance, ventilation, respiratory protection, tobacco smoke-free environment.

Occupationally induced asthma:

- Recommend complete cessation of exposure to initiating agent.

Once asthma is in control, routine follow-up visits should occur every 6-12 months. If asthma is not in control, the patient should be seen every two weeks until control is achieved.
Seniors and Asthma

- Asthma in the elderly is often under-diagnosed and under-treated.
- Asthma can develop later in life; however, it is difficult to diagnose in older adults because of other respiratory and cardiac diseases.
- Medications used to treat other diseases, such as cardiovascular disease, may render asthma rescue medications useless, or can have other unwanted effects.

Diagnosing asthma and older adults

- Difficult to diagnose.
- Many older adults already have chronic respiratory or cardiovascular conditions that could mask asthma symptoms.
- Asthma may worsen COPD and COPD may worsen asthma. Consider treatments for both possibilities simultaneously.

Complications and co-morbid conditions

- Cardiovascular conditions present another challenge in treating older adults with asthma. Because some medications used to treat cardiovascular diseases are beta blockers, they may decrease the effect of beta-agonists like bronchodilators. The risks and benefits should be carefully weighed for both conditions.

Medications and older adults

Medications used to treat asthma in the elderly do not differ significantly from those for younger patients. However, the risk of adverse effects from asthma treatment is greater on long-term management, and the potential for drug interactions is greater because of many coexisting conditions.

- It is important to be aware of coexisting diseases and conditions.
- Monitor patient use of medications and watch for adverse side effects associated with different medications.
 - Beta2-agonist and theophylline use should be monitored carefully because they can cause tachy arrhythmias and aggravate ischemic heart disease. Theophylline should be used with caution, especially in patients with congestive heart failure. Theophylline can cause:
 - Cardiac arrhythmias
 - Nausea and vomiting from gastric irritation
 - Gastroesophageal reflux
 - Insomnia
 - Hypotension
 - Hypertension
 - Tremor
 - Seizures
- Systemic corticosteroids may aggravate congestive heart failure and lower serum potassium with potentially adverse cardiac effects.
- Corticosteroids in high doses may reduce bone mineral content and may accelerate development of osteoporosis. The National Asthma Education Prevention Program notes that older adults are more frequently prescribed oral steroids than inhaled steroids to manage asthma because there are higher risks of side effects with oral steroids (e.g., bone density, changes in blood sugar level, cataracts, glaucoma). **Inhaled steroids are the preferred method of treatment (a spacer is also recommended).**

Note: It is important to establish the appropriateness of asthma medications and doses by regularly evaluating the patient’s response to therapy. Review of patient’s technique in taking medications is also important; a failure to respond adequately to therapy is often a result of improper medication inhaler technique.

Non-asthma medications with increased potential for adverse effects in the elderly patient with asthma.

<table>
<thead>
<tr>
<th>Medication</th>
<th>Co-morbid condition(s) for which drug is prescribed</th>
<th>Adverse effects</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-adrenergic blocking agent</td>
<td>Hypertension Heart Disease Tremor Glaucoma</td>
<td>Worsening asthma Bronchospasm Decreased response to bronchodilator Decreased response to epinephrine in anaphylaxis</td>
<td>Avoid where possible; when must be used, use a highly beta-selective drug</td>
</tr>
<tr>
<td>Non-steroidal anti-inflammatory drugs</td>
<td>Arthritis Musculoskeletal diseases</td>
<td>Worsening asthma Bronchospasm</td>
<td>Not all elderly with asthma have non-tolerance of NSAIDs, but are best avoided if possible</td>
</tr>
<tr>
<td>Non-potassium sparing diuretics</td>
<td>Hypertension Congestive heart failure</td>
<td>Worsening cardiac function/ dysrhythmias due to hypokalemia</td>
<td>Additive effect with anti-asthma medications that also produce potassium loss (steroids, beta-agonist). Elderly also more likely to be receiving drugs (e.g., digitalis where hypokalemia is of increased concern)</td>
</tr>
<tr>
<td>Cholinergic agent</td>
<td>Urinary retention Glaucoma</td>
<td>Bronchospasm Bronchorrhea</td>
<td>Note that some over-the-counter asthma medications contain ephedrine, which could aggravate urinary retention, glaucoma</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>Heart failure Hypertension</td>
<td>Increased incidence of cough</td>
<td></td>
</tr>
</tbody>
</table>
Additional Resources

American Academy of Allergy, Asthma, and Immunology
www.aaaai.org/patients/publicedmat/tips/asthmaandpregnancy.stm
www.aaaai.org/patients/seniorsandasthma/gerd.stm
www.aaaai.org/patients/seniorsandasthma/asthma_emergency.stm
www.aaaai.org/patients/publicedmat/tips/occupationalasthma.stm

Environmental Protection Agency
www.epa.gov/aging/solutions/Solutions6_1.pdfma/asthlrc.html

Mayo Clinic
http://www.mayoclinic.com/health/occupational-asthma/DS00591

NAEPP Guidelines for Asthma in the Elderly

National Jewish Medical Center
http://www.njc.org/
http://www.nationaljewish.org/disease-info/diseases/asthma/about/types/occupation.aspx

National Heart, Lung, and Blood Institute
http://www.nhlbi.nih.gov/health/prof/lung/asthma/astpreg.htm

Occupational Safety and Health Administration (OSHA)
http://www.osha.gov/SLTC/occupationalasthma/
http://Familydoctor.org/040.sml?printxml

Pregnancy and Asthma
http://www.aaaai.org/patients/advocate/2003/spring/women.stm

Womenshealth.gov
www.womenshealth.gov/pub/steps/Asthma.htm

Traveling with Asthma
www.aaaai.org/patients/publicedmat/tips/travelinewithallergies.stm
References

Beck, C
Asthma in Utah - Burden Report 2009
Utah Asthma Program, Bureau of Health Promotion, Utah Department of Health; (2007)

National Asthma Education and Prevention Program of the National Heart, Lung, and Blood Institute, National Institutes of Health; (2007)

For more information

The National Heart, Lung, and Blood Institute (NHLBI) Health Information Center is a service of the NHLBI of the National Institutes of Health. The NHLBI Health Information Center provides information to health professionals, patients, and the public about the treatment, diagnosis, and prevention of heart, lung, and blood diseases and sleep disorders. For more information contact:
NHLBI Health Information Center
PO Box 30105
Bethesda, MD 20824-0115
Phone: 301-592-8573
Fax: 301-592-8563

Utah Department of Health Asthma Program
PO Box 142106
Salt Lake City, Utah 84114-2106
Phone: 801-538-9272
Web site: www.health.utah.gov/asthma